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The mean-field approximation is shown to give an upper bound on the magne- 
tization for a large class of one-component models with arbitrary ferromagnetic 
pair interactions. Specific examples include discrete and continuous spin Ising 
models. In addition, a new comparison inequality for multicomponent rotators 
is proven which allows this result to be extended to the plane rotator and 
classical Heisenberg ferromagnets. 
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1. INTRODUCTION 

Mean-field models are generally regarded as a somewhat crude first ap- 
proximation to ferromagnetic spin models. Even so, the value of the 
mean-field approximation is greatly enhanced in those circumstances in 
which it places strict bounds on the quantities of interest, such as, the 
critical temperature and magnetization. The first bound of this kind was 
obtained by Griffiths. (1) Using a special correlation inequality for the 
spin- l /2  Ising ferromagnet, he showed that the onset of spontaneous 
magnetization always occurs at a temperature below the mean-field critical 
value, that is, T c < TMF. The same result has also been obtained recently (2) 
for a large class of one-component (Ising) models by the use of Dobrushin's 
uniqueness theorem, and more recently, (3'4) for the n-vector model by the 
use of local Ward identities. 

Much less is known about mean-field bounds on the magnetization. 
The only result so far, for the spin- l /2  Ising ferromagnet, is due to 
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Thompson. (5) Using specific properties of this model, he showed that the 
magnetization is always bounded above by the mean-field magnetization. 
This remarkable result immediately implies the mean-field bound on the 
critical temperature. A natural question to ask then is: Does this stronger 
bound hold for models other than the spin-l/2 Ising model? 

In this paper new methods are developed to obtain mean-field bounds 
on the magnetization. In particular, the new methods apply to generalized 
Ising and vector spin models. The remaining two parts of this introduction 
are devoted to defining the models and discussing their mean-field coun- 
terparts. In Section 2 the results for one-component (Ising) models are 
presented. A new comparison inequality for multicomponent rotators is 
proved in Section 3. This is then combined with the results for one- 
component models to obtain mean-field bounds on the magnetization for 
the plane rotator and classical Heisenberg models. Finally, in Section 4, a 
general theorem is proved giving mean-field bounds on critical tempera- 
tures. 

It is perhaps worth mentioning at this point that mean-field upper 
bounds on the magnetization are the best possible for arbitrary ferromag- 
netic pair interactions. It is known, for example, that equality can be 
attained in the limit of long-range interactions. Nevertheless, by restricting 
Thompson's methods to the case of neares t -ne ighbor  interactions on a 
regular lattice with a f i x e d  coordination number, Krinsky (6) has managed 
to obtain an improved bound on the magnetization for the spin-l/2 Ising 
model, corresponding to the Bethe approximation. 

1.1. The Spin Models 

Let A be a finite periodic lattice. To each site i ~ A associate either a 
one-component (Ising) spin o i ~ II~ or an n-dimensional unit vector (classi- 
cal spin) S i = (Si  ~ , Se 2 . . . . .  St") ~ S " ,  where S "  denotes the unit sphere in 
R'. The model Hamiltonians to be considered are then 

l E Ji j~176 - h ~ 0 i (1) 
H ( o )  -- - -~ i , jEA i ~ A  

and 

1 E J s,.sj-hEs,' (2) / - / ( s )  = - 

i,jEA iEA 

Unless it is explicitly stated to the contrary in the sequel, it will tacitly be 
assumed that the interactions for these models are ferromagnetic and 
translationally invariant, so that 

Jij = J ( i - j )  >1 O, h >1 0 (3) 
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and 

J = E J~j (4) 
j e A  

independent of i in A. 
To complete the definition of the models, it is necessary to specify a 

priori measures on the single-spin spaces ~ and S n. For the one-component 
model the probability measure on R will be denoted u and called the 
single-spin measure. For the n-vector model, the probability measure will 
always be the (normalized) uniform measure on the sphere S". The configu- 
ration spaces are, respectively, 

{o} = | K ( s }  = | s" (5) 
iEA iEA 

For the one-component model, with single-spin measure p, the expected 
value of an observable rio) will then be 

(fie)) = f{~} f(a)e-/~/4(~ A d,(oi)/f(o}e-/~H(~ eII A dr, (o,) (6) 

where f l  = 1/k  s T is the inverse temperature and the integrals extend over 
the entire configuration space. Similarly, for the n-vector model (2 ) ,  

(f(S)) = f  /(S)e -Bs~(s) I I  dSil(e-BH(S) I-I dSi (7) 
(S) i~A / J { S }  iEA 

For convenience in the sequel, the temperature dependence will usually be 
suppressed (i.e., the factor /3 will be absorbed into the interactions Y~ 
and h). 

!.2. Mean-Field Theory 

The mean-field or equivalent-neighbor models are defined by setting 
all the interactions J~ = J/IA[, where ]A[ denotes the number of sites in A. 
With this replacement, the models (1) and (2) can be solved exactly. For 
definiteness, consider the spin-s Ising model given by the Hamiltonian (1) 
with the single-spin measure 

S 

1 8(o + Ws)do (8) d I , ( o ) -  2s + 1 l = - s  

In this case the solution of the mean-field model is well known (7'8) and, in 
particular, the mean-field magnetization m is given as the largest root of the 
equation 

m = Bs(Jm + h) (9) 
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where 

B s ( x ) - 2 s + l  c~ 2 s + 2 s  ~ l x )  - lTs c ~  (10) 

is the Brillouin function. 
More generally, the mean-field magnetization m--  m(J,h) will be the 

largest root of the equation 

m= f d (o)oek~ f du(o)e k~ (11) 

with 
k = Jm + h (12) 

This certainly holds, for example, if ~ E ~31L; where sYL is the class of even 
probability measures on R with compact support such that m(k), as given 
by (1 1), is concave for k/> 0. Under these circumstances, the function m(k) 
looks qualitatively like the hyperbolic tangent. It is a real-analytic, 
bounded, and odd function of k; moreover, for k >/0 it is concave, 
nonnegative and nondecreasing with slope X at the origin given by 

x =fd (o)o 2 (13) 

If u ~ 01L the mean-field theory exhibits spontaneous magnetization. 
For suppose h > 0. Then, from the properties listed above, it follows that 
(1 1) and (12) have a unique positive solution m(J, h). Letting h--> 0 + it is 
found that 

lim m(J,h)  = [ m(J,O) > O, Jh  > 1 (14) 
h-,o+ [ 0, J h  ~< 1 

Resurrecting the temperature dependence, it is seen that the critical temper- 
ature of the mean-field model is 

= 'J f 2 (15) 

For the n-vector model (2), the mean-field magnetization is a vector 
pointing in the direction of the applied field (i.e., along the axis labeled I) 
with magnitude m given (9) as the largest root of the equation 

m = I(~/2),(Jrn + h) / l ( i /2) ,_ l (Jm + h) (16) 

where l~,(x) is the modified Bessel function of order ~a. It is easily verified 
that this is just the mean-field equation [(11) with k = Jm + h] for a 
one-component model with single-spin measure on [ -  1, 1] given by 

dl,~(o)=(1- o2)(1/2)(n-3)do/ f l l ( l  - o2)(I/2)(n-3)d(I (17) 

As we shall see in Section 3, this is no coincidence! 
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2. ONE-COMPONENT BOUNDED SPINS 

We show that the mean-field magnetization is an upper bound when- 
ever the single-spin measure r lies in a certain class 9.  To define @, let 
m = m(k) depend on u as prescribed by (1 1). The class e2 is then the set of 
all even probability measures on R with compact support, such that 

fa~(o)ek~(m _ ~ 0 (18) 

wheneverpE2~ § and k > 0 .  Since the concavity of m(k) for k > 0  is 
equivalent to condition (18) with p = 3, we see immediately that ,6? c ~ 

Theorem 1. Consider the one-component model with Hamiltonian 
(1) and suppose the single-spin measure v E ~.  Then 

(cri> < m (19) 

where m = m(J,h) >. 0 is the largest root of (1 1) and (12). 

Proof. Write 

1 JAlJm2 (20) - H ( , )  = �89 g ,Am - , , ,)(m - , j )  + (gin + h) 
i , jcA iEA 

and set 

Then 

where 

- Ho(o ) = (Jm + h) ~ oi (21) 
i E A  

1 ,j~eAJ,J(m- o,)(m- oj)] ) ~ (m--o,)= Z - ' ( ( m -  oi)exp[ ~ (22) 

and ( . . . ) 0  denotes expectation (6) with respect to the Hamiltonian H 0. 
Now expand the exponential on the right side of (22). The result is a series 
of nonnegative terms because ( . . . ) o  factors over the sites and, by 
hypothesis, 

( ( m -  oi);)0> 0 (24) 

for any p ~ 77 + and i E A. This proves (19). II 

This is the main theorem. The problem now is to determine what 
measures lie in r Unfortunately, we do not at present have a complete 
solution to this problem. It is possible, however, to show that many 
discrete and continuous-spin measures do lie in @. We begin by proving the 
following general result. 
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Lemma 2. If Ul(a), u2(o ) E ~,  and c~ > 0, then lq(aa) and u~ �9 ~,2(o) 
~.  That is, P is closed under scale transformations, and convolutions(l~ 

defined formally by 

d(v, �9 p2)(o) = fdVl(~-) d~,2(o - "g) (25) 

Proof, The first part is easily obtained by a change of variables. To 
prove closure under convolutions we define 

= = f d u ( o ) e  x~ (26) ~ (x )  

to be the bilateral Laplace transform of p and set 

D (x) = log ~ (x )  (27) 

Since r is entire, the condition (18) is seen to be equivalent to requiring 
that, for all k/> 0, the function (primes denote differentiation) 

r  - r)exp[rdg'(k)/rb(k)] = e x p [ D ( k  - r) + rD'(k)]  (28) 

be strongly positive (i.e., have a Taylor expansion about r = 0 with coeffi- 
cients that are all nonnegative). The result thus follows from the convolu- 
tion theorem (~0) 

~(/~l*b'2) = ~(Pl)~(P2) (29) 

and the fact that the product of two strongly positive functions is strongly 
positive. �9 

Consider the spin-s Ising model given by (1) and (8) 

(30) 

(31) 

Corollary 3. 
and suppose that 

2s + 1 = 2 q �9 3 r 

for some choice of nonnegative integers q and r. Then 

(oi)  < m 

where m = m(J, h) is the largest root of (9). 

Proof. By Theorem 1 we need only show that u E @ for the pre- 
scribed values of s. Consider first s = 1/2. In this case the condition (18) 
for odd p reduces, after some algebra, to the inequality 

e ke. e -k >/e -ke.  e k (32) 

which is obviously true for all p >/ 1 and k >/0. Next consider s = 1. In this 
case the condition (18) for odd p is equivalent to 

(2e k + 1)ee -k + (e k -  e -k )  e -  (1 + 2e-~)ee k /> 0 (33) 
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For p = 1 equality holds. For p > 2 the left side is not less than 

(2 + e-k)Pe k - (1 + 2e-k)Pe k (34) 

which is nonnegative for k > 0 as required. To show v ~ P for the other 
values of s we convolute sp in- l /2  and spin-t measures and use Lemma 2. 
For example, if s = 5/2,  we find 

g = ( 1 / 6 ) [ 6 ( o  + (3 /5) )  + 6 ( o -  (3 /5 ) ) ]  

* [6 (o  + (2/5))  + 8(o) + 8 ( a -  (2 /5 ) ) ]  do E o) �9 (35) 

I .emma 4. Let v be an even probability measure with support on 
[ - 1 ,  1], and suppose v is absolutely continuous, i.e., d v ( o ) = f ( o ) d o ,  w i t h f  
nondecreasing on [0, 1]. Then v ~ ~.  

Proof. G i v e n 0 <  m ~< 1 a n d k > 0 ,  weshow 

l dv o e k~ m (1 o) 0 (36) 

for all odd integers p. But now, for o < 2m - 1 the integrand is nonnega- 
tive. Moreover, after the substitution x = o -  m, the remaining integral 
over the range 2m - 1 ~< o ~< 1 takes the form 

= ekms + x ) -  e-kXf(m -- x)]  

•  m ) e - ' x -  x p] (37) 

This is also nonnegative under the assumed conditions on f. So this proves 
(36). If we now choose m = m(k)  given by (11), we obtain (18) forp odd; 
f o r p  even (18) is trivial. �9 

Coroflan/ 5. Consider the spin-~ Ising model given by (1) with 
single-spin measure dr(o) = (1/2)  do, the uniform measure on [ -  1, 1 ]. Then 
v E P and 

(oi)  < m (38) 

where m = m(J,h)  is the largest root of the equation 

m = L(Jm + h) (39) 

with L ( x ) =  cothx  - x - l  the Langevin function. 

Proof. The result follows immediately from Lemma 4 and Theorem 
1, or from Corollary 3 by taking the limit s ~ ~ .  �9 
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In concluding this section, it should be pointed out that the above 
results are not entirely satisfactory. First, it has not been shown that the 
spin-s measure (8) lies in 62 for all values of the spin, though this seems to 
be a reasonable conjecture. Second, it is vital in discussing the n-vector 
model in the next section to know whether the single-spin measure (17) lies 
in 62. Lemma 4 applies when n = 2 or 3, but the question has not yet been 
settled for n > 4. 

3. MULTICOMPONENT ROTATORS 

The key to obtaining mean-field bounds on the magnetization for 
rotators is to consider the Ising-like n-vector model. The spins of this model 
are n-dimensional unit vectors but the interaction, given by 

HI(S) = - 2 JijSilSj l -  h 2 Si I (40) 
i ,jEA i~A 

involves only the components along the field. Therefore, if we set S, 1 = oi, 
the other components can be integrated out. In this way the model reduces 
to a one-component model with single-spin measure on [ -  1, 1] given by 

A n - I  . ,  O2)(1/2)(n--3) dr (o )  = ~ (~ - do (41) 

where 

A.  = 2vr ~ l/2)n/F[ (1/2)hi  (42) 

is the surface area of a unit n-dimensional sphere. 
To make this identification precise, let A be a multiplicity function 

assigning a nonnegative integer A (i) to each site i in A, and define 

~ = I I  ~ (i), etc. (43) 
lEA 

Then, for any multiplicity function A, the assertion is that 

(S~)I -- (oa)  (44) 

where on the left the expectation [cf. (7)] is with respect to the vector 
Hamiltonian (40) and on the right the expectation [cf. (6)] is with respect to 
the one-component Hamiltonian (1) with single-spin measure given by (41). 

In mean-field approximation ( J~ - - J / IAI )  the Ising-like n-vector 
model (40) has exactly the same solution (16) as the isotropic n-vector 
model (2). The crucial result then is the following comparison inequality. 

Theorem 6. Consider the n-vector model (2) and suppose the inter- 
actions are ferromagnetic (i.e., J~ > 0, h > 0; the J,j need not be translation 
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invariant). Then for any multiplicity function A 

{S~) ~< {SAI), (45) 

where the expectation on the right is with respect to the Ising-like n-vector 
model (40). 

Proof. We define (11) a mixed duplicate Hamiltonian 

H ( S , S )  = H(S)  + H,(S)  (46) 

Then, taking expectations in the doubled system, {~~ the result we want to 
prove is 

(S~ - S~) > 0 (47) 

To this end we parametrize the spins as 

S i = (cos 0 i, sin OiVi) (48) 

and 

Si = (c~ sin~r (49) 

where 0 < 0 i, t~ i < ~r, and Vi and ~r are (n - 1)-dimensional unit vectors 
(spins). Under this transformation the configurational integrals become 

f s .dS i  f s . dS i=  s163 ~dO'(sinOisinO-i )~-2(" as" - ' dVi(as" - ' dgci (50) 

To prove (47) we note that the denominator is nonnegative and expand the 
Boltzmann factor exp[ - H(S,  S)] in the numerator. Then, by expanding the 
terms such as 

~1~.1 _1.. Si .Sj  = cos~.cos 4 -1- cos0i cos 6 -t- sinOisinOjV i .Vj  (51) 

and S ~ -  S~, in the usual way, (~) the numerator can be written as a 
polynomial with nonnegative coefficients in the variables: 

(cos t~ + cos 0~ ), ( sin 0s + sin ~ ), V i" Vj ( 52) 

Performing the integrals (50) term-by-term now leads to the desired result 
because such integrals are known to be nonnegative (see Theorem 2.1 and 
Lemma 3.1 of Ref. 11). 

Corollary 7. Consider the n-vector model (2) with n = 2 or 3. Then 

(Si' > << m (53) 

where m = m(J ,h)  is the largest root of Eq. (16) which, for n = 3, takes the 
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familiar form 

m = L(Jrn + h) (54) 

with L(x) = coth x - x -  1 the Langevin function. 

Proof. By Theorem 6 and the identification (44) 

( S / )  < (o,)  (55) 

where the single-spin measure on the right is given by (41). But now, for 
n = 2 or 3, this measure is in 62 by Lemma 4. The result is thus obtained by 
using Theorem 1 and the integral formulas: 

l 7TI/2F(~ + (1 /2)) I . (k)  
f_  (1  - = (56) 

( (1 /2 )k)  ~ 

f . ,  ~ ' /zr ( /~  + (1/2))l,.+,(k) 
1(1 - o2)~-'/2oe*Odo = ( (1 /2 )k ) .  L (57) 

4, BOUNDS ON CRITICAL TEMPERATURES 

For the one-component model (1), Cassandro et al. <2) have shown that 
T C < TMF whenever the single-spin measure v E ~ .  This is a very strong 
result, but it requires the full machinery of Dobrushin's uniqueness theorem 
and the Vasershtein distance. In this section we will prove a weaker, but it 
is hoped more accessible result. Namely, we prove that T c < TMv under the 
additional hypothesis that v has the Lee-Yang property. (12) Since the 
single-spin measures of immediate interest here possess the Lee-Yang 
property, this is not a serious drawback. 

Theorem 8. Consider the one-component model (1) with single-spin 
measure v ~ ~C and suppose that q~(z), given by (26) for z E C, has only 
pure imaginary zeros. Then 

L TMF = k 'Jfd (o)  2 (58) 

Proof. The Laplace transform qS(z) is an entire function of order not 
exceeding 1. Therefore, by applying Hadamard's  factorization theorem, (~3) 
and using the assumed properties of u and q~ we see that �9 can be written 
as an infinite product 

qS(x)= fi (1 + x2/az,) (59) 
n = l  
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where the % can be ordered such that 

0 < a I < a 2 ~< a 3 ~< �9 �9 �9 . (60) 

Now consider an individual factor 

�9 n(x) = 1 + x 2 / a  2 (61) 

For any such factor it is readily verified that the requisite function (28), viz. 

[a  2 + ( k -  r ) 2 ] e x p I 2 k r / ( a 2  + k2)] (62) 

is strongly positive for 0 < k < %. By forming products, it thus follows that 
the function (28), with ~(x) given by (59), is strongly positive for 0 ~< k 
< a 1. Equivalently, we conclude that u satisfies condition (18) for 0 ~< k 
< a I . Now examining the proof of Theorem l, we see that if 0 < Jm 
+ h < a 1, where m = m ( J , h )  is the largest root of (11) and (12), then 

0 < (oj) < m (63) 

Moreover, since a I does not depend on A, this inequality continues to hold 
in the thermodynamic limit. In particular, from (14) we see that 

lira lim (oi> = 0 (64) 
h ~ 0 +  A - - 9 ~  

for T/> TMF. That is, there is no spontaneous magnetization for T/> TMF. 
Hence T~ < TMv. [] 

Corollary 9. For the spin-s Ising model, given by (1) and (8), 

T~ << k ~ l J ( s  + 1)/3s (65) 

Proof.  The result follows from Theorem 8 because u E ~3Fc and 

1 sinhI(2s + 1 ) x / 2 s ]  

r  2s + 1 s i n h ( x / 2 s )  

( I = f i  , +  / fi n = 1 2mrs , = 1 

has only pure imaginary zeros. [] 

Corollary 10. For the n-vector model (2) 

T~ < J / k e n  (67) 

Proof. It follows from (55) that the critical temperature for the 
n-vector model is bounded above by the critical temperature for the 
one-component model with single-spin measure given by (41). For this 
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one-componen t  model  ~ E ~ and  [see (56)] 

�9 (x) = F[(1/2)nllc1/2)._ l ( x ) / [ (1 /2 ) x ]  ~'/2)n-a 

= rI  x2/a2 "~ (68) (1 + / n,O 
l=1 

where c%t, l = 1,2, 3 . . . .  are the positive zeros of the (unmodif ied)  Bessel 
funct ion Jr(x) of order ~ = (1 /2 )n  - 1. The  required result thus follows by  
applying Theorem 8 to this one -componen t  model.  
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